Quantification of (−)-Epigallocatechin-3-gallate Inhibition of Anaplastic Thyroid Cancer Cell Line Adhesion and Proliferation Using Real-time Cell Analysis

Masayuki MIYAZAWA, Shinichi IWAI, Takeshi HAYASHI, Yuko UDAKA, Akiko SASAKI, Shotaro HASHIMOTO, Takehiko SAMBE, Kiyoshi FUKUHARA, and Katsuji OGUCHI

Abstract: Anaplastic thyroid cancer (ATC) has a poor prognosis because of immediate metastasis. Several studies in humans and animals have suggested that the ingestion of green tea or its active ingredient (−)-epigallocatechin-3-gallate (EGCG) may decrease the risk of cancer. Using a recently developed real-time cell analysis (RTCA) system, we have shown previously that EGCG inhibits cell migration and the invasion of oral cavity cancers by suppressing matrix metalloproteinases. In the present study we used RTCA to investigate the effects of EGCG on cell adhesion to fibronectin-coated plates using three cancer cell lines: one ATC cell line (TCO-1) and two poorly differentiated oral squamous cell carcinomas (OSCCs) cell lines (SAS and HO-1-u-1; originating from the tongue and floor of the mouth, respectively). EGCG (50 µM) inhibited the adhesion of all three cell lines. In addition to its effects on cell adhesion, 50 µM EGCG inhibited the cell proliferation of TCO-1 cells. Furthermore, EGCG decreased αv integrin (ITGAV) mRNA levels in all three cell lines, suggesting that EGCG inhibits the cell adhesion and proliferation of OSCC and ATC cells via suppression of integrin expression. Therefore, EGCG represents a useful dietary constituent or a lead compound for counteracting metastasis of oral cavity cancers and thyroid cancers.

Key words: anaplastic thyroid cancer, oral squamous cell carcinoma, adhesion, (−)-epigallocatechin-3-gallate (EGCG), real-time cell analyzer

Introduction

Green tea is consumed worldwide. Because it contains catechins, green tea may have therapeutic potential in areas such as preventing cancer, pollenosis, and osteoporosis. There are four main catechins in green tea: (−)-epigallocatechin-3-gallate (EGCG), (−)-epigallocatechin, (−)-epicatechin-3-gallate, and (−)-epicatechin. EGCG, the primary catechin in green tea,
exhibits strong activity in various assays, including antitumor, anti-oxidation, and anti-angiogenesis assays.

The xCELLigence real-time cell analysis (RTCA) system (SCRUM Inc., Tokyo, Japan) was developed for analysis of cell migration, invasion, and adhesion in vitro. This system uses impedance detection to create a cell index that is used for continuous monitoring of cell viability, migration, and invasion. In a previous study using RTCA we showed that EGCG inhibited cell migration and invasion in oral squamous cell carcinomas (OSCCs). Moreover, we have demonstrated that anaplastic thyroid cancer (ATC) cells (TCO-1) have high migratory and invasive activity in association with high periostin expression. In particular, TCO-1 cells exhibit very high periostin expression compared with other cell lines tested.

ATC is a rare and highly malignant form of thyroid cancer with a high mortality rate. Treatment of ATC is very difficult and consequently the survival rate is very low for associated head and neck cancers. At present, new therapeutic agents for ATC are in great demand.

Periostin, the expression of which is elevated in TCO-1 cells, was originally identified as an 811-amino acid protein secreted by osteoblasts. Periostin has frequently been observed as a major constituent of the extracellular milieu of desmoplastic malignant tumors. Periostin functions as a ligand for \(\alpha_5\beta_3 \) and \(\alpha_5\beta_5 \) integrins to support the adhesion and migration of ovarian epithelial cells. However, few studies have examined the relationship between EGCG and periostin.

Integrins permit dynamic bidirectional transmembrane signaling that is essential in cell adhesion, migration, differentiation, and survival. Human integrins have 18 \(\alpha \)- and 8 \(\beta \)-subunits that combine to give 24 different \(\alpha\beta \) heterodimers. Iwamoto et al reported that talin binding conformationally activates transmembrane integrin adhesion receptors to increase their affinity for extracellular ligands and promotes integrin clustering for high-affinity adhesion to the extracellular matrix. Several studies have reported that EGCG inhibits the invasion and migration of cancer cells by suppressing the activation and expression of integrins. It is thought that EGCG plays an important role in suppressing cancer metastasis by inhibiting integrins.

Previously, we reported on the inhibition of the migration and invasion of OSCCs using the RTCA system. Moreover, we reported that TCO-1 cells exhibit a strong migratory activity compared with OSCCs. On the basis of these observations, we surmised that TCO-1 cells possess strong adhesive activity. In the present study, we used RTCA to investigate EGCG inhibition of the adhesion of an ATC cell line, as well as that of cell lines from cancers of the tongue and the floor of the mouth, and also the associated expression of periostin and integrin mRNA.

Materials and methods

Cell lines and reagents

All three cell lines used in the present study were provided by the Health Science Research Resources Bank (Osaka, Japan). TCO-1 (JCRB0239) cells were established from a human non-differentiated thyroid cancer, the SAS (JCRB0260) cell line was established from poorly
differentiated OSCC of the tongue18, and the HO-1-u-1 cell line (JCRB0828) was established from a poorly differentiated OSCC of the floor of the mouth19. EGCG (MW458.37) was purchased from Wako Pure Chemical Industries (Osaka, Japan).

\textit{Cell culture}

All cell lines were cultured at 37°C in humidified atmosphere of 5\% CO\textsubscript{2} and 95\% air in medium containing 10\% fetal bovine serum (FBS), 100 U/ml penicillin, and 100 µg/ml streptomycin. TCO-1 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM), whereas SAS and HO-1-u-1 cells were cultured in 45\% DMEM–45\% Ham’s F12 medium (DMEM/F12). The medium was changed every 3 days10,17–19.

\textit{Hematoxylin–eosin staining}

After 6 h culture in the presence or absence of EGCG, TCO-1 cells were stained with hematoxylin–eosin (HE).

\textit{Real-time cell analysis}

Previous studies have reported on the migration and invasion of OSCC cells as determined by RTCA7,9,10. In the present study, adhesion was assessed on an RTCA system E-Plate 16 coated with fibronectin (20 mg/ml). TCO-1 cells (1.5×104), SAS or HO-1-u-1 cells (1.0×105) were seeded onto an individual E-Plate 16s in 100 µL medium specific for each cell line without FBS. The final EGCG concentration in the TCO-1 medium was 10, 30, 50, 100, or 200 µM, whereas the final EGCG concentration in the SAS and HO-1-u-1 medium was 50, 100, or 200 µM. Changes in impedance resulting from cells that had migrated to the bottom side of the membranes were recorded every 15 min and were monitored for a total of 24 h.

A unitless parameter, termed the cell index (CI), was used to measure the relative change in electrical impedance as a marker of cell status. The CI is a relative and dimensionless value because it represents the impedance change divided by a background value.

\textit{RNA isolation and quantitative real-time reverse transcription–polymerase chain reaction}

Head and neck cancer cells were seeded in six-well plates and grown for 1 week at 37°C. Total RNA was extracted using NucleoSpin RNA II (MACHEREY-NAGEL, Duren, Germany) after treatment with EGCG for 6 h. Total RNA was reverse transcribed using the PrimeScript RT Master Mix (TaKaRa Bio, Shiga, Japan). The resulting cDNAs were amplified using primers designed with ProbeFinder software (Roche Applied Science, Mannheim, Germany) for periostin, α\textsubscript{1} integrin (ITGA1), ITGAV, and ITGB1. Table 1 lists the primers used, the Roche Universal Probe Library probe numbers, and the gene accession numbers. Amplification was performed with a LightCycler (Roche) using the LightCycler TaqMan Master mix (Roche). The PCR reaction parameters were as follows: 95°C for 10 min, followed by 45 cycles (except for 18s rRNA amplification = 25 cycles) of 10 s at 95°C, 30 s at 60°C, and 1 s at 72°C. Fluorescence data were analyzed using LightCycler software (Roche). mRNA levels of the genes of inter-
est were normalized against those of 18s rRNA used as an internal standard to yield relative expression ratios 7).

Statistical analysis
The normal distribution of baseline variables for all data was evaluated using the Bonferroni test following one-way analysis of variance (ANOVA). All data are expressed as the mean ± SEM. \(P < 0.05 \) was considered significant.

Results
Fig. 1 shows HE-stained TCO-1 cells after 6 h culture in the absence (control) or presence of 200 µM EGCG. No obvious morphological changes (rounding and swelling) were observed after culturing cells in the presence of EGCG. There was no clear evidence of apoptosis or necrosis after culture in the presence of 200 µM EGCG. Similarly, EGCG did not induce apoptosis or necrosis in SAS and HO-1-u-1 cells (data not shown).

RTCA results of up to 6 h reflect changes in adhesion, whereas results after the 6-h time point reflect changes in cellular proliferation. Fig. 2 shows the effects of EGCG on cell adhesion (0–6 h) and proliferation (6–24 h) on the fibronectin-coated E-Plate 16s. EGCG inhibited TCO-1 adhesion in a concentration-dependent manner (Fig. 2A). After incubation with EGCG for 5 h, the CI for control, 30, 50, and 200 µM EGCG-treated TCO-1 cells was 5.80 ± 0.40, 3.33 ± 0.34, 0.68 ± 0.08, and 0.22 ± 0.02, respectively, with significant reductions in the CI in the presence of EGCG at all concentrations tested \((P < 0.01 \text{ vs control for all}) \). EGCG (50 µM) treatment resulted in a 97.8% inhibition of cell proliferation for up to 24 h (Fig. 2A). The adhesion of SAS cells was significantly decreased by 96.6% after 5 h exposure to 200 µM EGCG \((P < 0.01 \text{ vs control and 50 µM EGCG}) \), by 43.9% after 5 h exposure to 100 µM EGCG \((P < 0.01 \text{ vs control and 50 µM EGCG}) \), and by 8.92% after 5 h exposure to 50 µM EGCG \((P > 0.05 \text{ vs control}) \).

Table 1. Nucleotide sequences of primers used for polymerase chain reaction

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sense primer</th>
<th>Antisense primer</th>
<th>Accession number</th>
<th>Probe number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periostin</td>
<td>5’-caccaaggtcaccacaattcat-3’</td>
<td>5’-ttcetacgggtgtcte-3’</td>
<td>NM_001135934.1</td>
<td>#9</td>
</tr>
<tr>
<td>ITGA1</td>
<td>5’-aatgctctagcaccatgg-3’</td>
<td>5’-caaatgaactgtactggt-3’</td>
<td>NM_181501.1</td>
<td>#14</td>
</tr>
<tr>
<td>ITGAV</td>
<td>5’-gctcgtttctctctcg-3’</td>
<td>5’-gagacctcgtcctccte-3’</td>
<td>NM_002210.3</td>
<td>#64</td>
</tr>
<tr>
<td>ITGBP1</td>
<td>5’-gatggctcgactcaag-3’</td>
<td>5’-acacagagctgttaac-3’</td>
<td>NM_002211.3</td>
<td>#65</td>
</tr>
<tr>
<td>18s</td>
<td>5’-ggaattttcctaatgagg-3’</td>
<td>5’-ggagaataataagcgaagc-3’</td>
<td>X03205.1</td>
<td>#48</td>
</tr>
</tbody>
</table>

ITG, integrin.
Fig. 1. Hematoxylin–eosin (HE) staining. TCO-1 cells were fixed in 10% formaldehyde for 1 h and were evaluated for morphological changes after 6 h culture in the presence of 200 µM (-)-epigallocatechin-3-gallate (EGCG) under an optical microscope after HE staining.

Fig. 2. Adhesion of (A) TCO-1, (B) SAS, and (C) HO-1-u-1 cells to a fibronectin-coated substrate was analyzed using real-time cell analysis (RTCA). Cells were seeded into wells of an E-Plate 16 (1.5 × 10^4 TCO-1 cells/well; 1.0 × 10^5 SAS and HO-1-u-1 cells/well) and allowed to adhere in the absence (Control) or presence of 10, 30, 50, 100, or 200 µM (-)-epigallocatechin-3-gallate (EGCG). Data are the mean ± SEM cell index (CI) of n wells (n = 16 [control], 9 [10 µM EGCG], 10 [30 and 50 µM EGCG], 7 [100 µM], and 8 [200 µM] in A; n = 8 [control, 50, 100, and 200 µM EGCG] in B; n = 5 [control], 7 [50 and 100 µM], and 4 [200 µM] in C). *P < 0.05, **P < 0.01 compared with control; † P < 0.05, †† P < 0.01 compared with 10 µM EGCG; §P < 0.05, §§P < 0.01 compared with 50 µM EGCG.
Masayuki MIYAZAWA, et al

140

The adhesion of HO-1-u-1 cells was decreased by 95.2% after 5 h exposure to 200 µM EGCG \(P < 0.01 \) vs control and 50 µM EGCG, by 79.8% after 5 h exposure to 100 µM EGCG \(P < 0.01 \) vs control and 50 µM EGCG, and by 34.0% after 5 h exposure to 50 µM EGCG \(P < 0.05 \) vs control; Fig. 2C. There were no clear effects of EGCG on the proliferation of HO-1-u-1 and SAS cells.

Fig. 3 shows peristin mRNA expression in head and neck cancer cells after 6 h exposure to EGCG. In these experiments, control expression was set at 100%. EGCG had no significant effect on peristin mRNA levels in TCO-1 cells (Fig. 3A), but there was a tendency for decreases in peristin mRNA levels in SAS and HO-1-u-1 cells after exposure to EGCG compared with control (Fig. 3B, C).

Fig. 4–6 show ITGA1, ITGAV, and ITGB1 mRNA expression in head and neck cancer cells after 6 h treatment with EGCG. In these experiments, control expression was set at 100%. EGCG had no significant effect on ITGA1 mRNA levels in TCO-1 (Fig. 4A), SAS (Fig. 4B), or HO-1-u-1 (Fig. 4C) cells. Treatment of TCO-1 cells with 30 and 50 µM EGCG resulted in a 61.3% and 9.8% decrease in ITGAV mRNA levels, respectively, compared with control \(P < 0.05 \) vs 30 µM EGCG and \(P < 0.01 \) vs 50 µM EGCG; Fig. 5A). Treatment of SAS cells with 50, 100, and 200 µM EGCG resulted in a 59.7%, 52.5%, and 59.8% decrease in ITGAV mRNA levels, respectively, compared with control \(P < 0.01 \) for all; Fig. 5B). Similarly, EGCG (50, 100, and 200 µM) treatment of HO-1-u-1 cells decreased ITGAV mRNA expression by 56.8%, 41.0%,
Fig. 4. *ITGAI* mRNA expression in the absence or presence of (-)-epigallocatechin-3-gallate (EGCG) was determined using quantitative real-time polymerase chain reaction in (A) TCO-1, (B) SAS, and (C) HO-1-u-1 cells and is shown relative to that in the absence of EGCG. Data are the mean ± SEM (n = 6 [0 µM] and 6 [10, 30, and 50 µM] in A; n = 9 [0 µM] and 6 [50, 100, and 200 µM] in B; n = 9 [0 µM] and 6 [50, 100, and 200 µM] in C).

Fig. 5. *ITGAV* mRNA expression in the absence or presence of (-)-epigallocatechin-3-gallate (EGCG) was determined using quantitative real-time polymerase chain reaction in (A) TCO-1, (B) SAS, and (C) HO-1-u-1 cells and is shown relative to that in the absence of EGCG. Data are the mean ± SEM (n = 6 [0 µM] and 6 [10, 30, and 50 µM] in A; n = 18 [0 µM], 15 [50 and 100 µM], and 14 [200 µM] in B; n = 6 [0 µM] and 9 [50, 100, and 200 µM] in C). *P < 0.05, **P < 0.01 compared with 0 µM.
and 44.4%, respectively, compared with control \((P < 0.05 \text{ vs } 50 \mu M \text{ EGCG and } P < 0.01 \text{ vs } 100 \mu M \text{ and } 200 \mu M \text{ EGCG}; \text{Fig. 5C}) \). EGCG had no significant effect on \(ITGB1 \) mRNA levels in TCO-1 (Fig. 6A) or SAS (Fig. 6B) cells. However, treatment of HO-1-u-1 cells with 50, 100, and 200 \(\mu M \) EGCG resulted in a 157.8\%, 200.5\%, and 212.7\% increase in \(ITGB1 \) mRNA levels, respectively, compared with control \((P < 0.05 \text{ for all}; \text{Fig. 6C}) \).

Discussion

In the present study, RTCA was used to demonstrate that EGCG inhibited the adhesion of ATC and poorly differentiated OSCC cell lines in real time and that these responses were associated with changes in the expression of \(\alpha_v \) integrin but not periodin. The use of RTCA facilitated the identification of the effects of EGCG on three types of head and neck cancer cells, demonstrating significant inhibition of cell adhesion by EGCG.

Prominent extracellular matrix (ECM) proteins include fibronectin, laminin, and collagens. These proteins are deeply involved in tumor growth, invasion, and metastasis because of adhesive interactions between tumor cells and the ECM\(^{20}\). Using fibronectin-coated E-Plate 16s in the present study revealed that EGCG directly inhibited cancer cell interactions with fibronectin. Moreover, Suzuki \textit{et al} reported that EGCG binds \(\beta_1 \) integrin\(^{21}\). Therefore, EGCG strongly and directly inhibits the binding of cells to the ECM. Moreover, RTCA indicated that EGCG inhibited the adhesion of all cells in a concentration-dependent manner. In particular, EGCG inhibited TCO-1 cell adhesion and proliferation. The findings of the present study show that at
100 and 200 µM, EGCG prevents the adhesion of TCO-1 cells to the surface of the plate. It is important to note that the CI is not altered by the presence of cells on the surface of the plate in the absence of adhesion\(^{22,23}\). Lim and Cha reported that EGCG (50–200 µM) inhibited cell proliferation and induced apoptosis in an ATC cell line (ARO cells) via suppression of the epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) pathway and cyclin B1/CDK1 complex\(^{24}\). However, in the present study, 200 µM EGCG did not induce apoptosis in TCO-1 cells.

Clinical studies of periostin expression in human cancers have found that increased expression of periostin is correlated with tumor metastasis\(^{25,26}\). Gillan et al reported that periostin promotes adhesion and potentiates cancer cell motility through binding to \(\alpha_\nu\beta_3\) and \(\alpha_\nu\beta_5\) integrins\(^{12}\). However, in the present study, EGCG did not decrease the expression of periostin mRNA in TCO-1 cells, and only 50 µM EGCG reduced \(\alpha_\nu\) integrin mRNA expression in TCO-1 cells by 90%. Yan and Shao reported that cellular adhesion of 293T cells required signaling through \(\alpha_\nu\beta_3\) integrin\(^{27}\). Therefore, EGCG suppresses adhesion of TCO-1 cells regardless of the overexpression of periostin observed in our previous study\(^{10}\).

ATC is a very aggressive solid tumor with a poor prognosis. Surgery, radiotherapy, and chemotherapy do not improve the mean survival time, which is in the range of 2–6 months\(^{28}\). EGCG may become a potential treatment for ATC that cannot be otherwise treated effectively. Previous studies have demonstrated that one consumption of green tea extract (1.5–4.5 g or 1–3 cups) by healthy individuals results in plasma concentrations of EGCG of only 4 µM\(^{29}\). The ingestion of benifuuki tea, which contains \(O\)-methylated catechin, results in higher EGCG blood concentrations and may have a more beneficial effect than other green teas\(^{30}\). It is necessary to devise an effective means to administer EGCG, such as \(O\)-methylated EGCG, because it will be difficult to immediately use EGCG in a clinical setting.

In conclusion, using RTCA technology we clearly showed that EGCG inhibited the adhesion and proliferation responses of an ATC cell line in real time. The findings of the present study suggest that EGCG may be a lead compound for reducing the metastases of ATC by inhibiting integrins.

Conflict of interest disclosure

The authors declare they have no potential conflicts of interest.

References

Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003544

[Received January 8, 2016: Accepted January 21, 2016]